[1]宋郭蒙,王 雄,王幸智,等.基于高效扰流技术的IGBT双面冷却散热器性能优化研究[J].机车电传动,2020,(01):22-27.[doi:10.13890/j.issn.1000-128x.2020.01.005]
 SONG Guomeng,WANG Xiong,WANG Xingzhi,et al.Optimization of the Double-sided Cooling Heatsink of IGBTBased on High Performance Turbulator[J].Electric Drive for Locomotives,2020,(01):22-27.[doi:10.13890/j.issn.1000-128x.2020.01.005]
点击复制

基于高效扰流技术的IGBT双面冷却散热器性能优化研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年01期
页码:
22-27
栏目:
功率半导体技术
出版日期:
2020-01-10

文章信息/Info

Title:
Optimization of the Double-sided Cooling Heatsink of IGBTBased on High Performance Turbulator
文章编号:
1000-128X(2020)01-0022-06
作者:
宋郭蒙王 雄王幸智黄 南吴智勇
(中车株洲电力机车研究所有限公司,湖南 株洲 412001)
Author(s):
SONG Guomeng WANG Xiong WANG Xingzhi HUANG Nan WU Zhiyong
( CRRC Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China )
关键词:
扰流子IGBT双面冷却散热器温升流阻均温性数值仿真
Keywords:
turbulator IGBT double-sided cooling radiator temperature raising flow resistance temperature homogeneity numerical simulation
分类号:
U264.3+7
DOI:
10.13890/j.issn.1000-128x.2020.01.005
文献标志码:
A
摘要:
基于数值仿真和试验研究方法,对用于轨道交通变流器的液冷散热器的性能进行了研究和优化设计,并将结果与HXD1C机车、HXD2B机车当前使用的散热器对比。结果表明,通过使用高效扰流技术和4组并联的流道结构,提升了散热器换热能力并降低了流阻,使散热器台面温升比HXD2B和HXD1C机车使用的散热器分别降低37%和14.1%,流阻分别降低36.9%和22.3%;通过使用对称的双面冷却结构,使IGBT安装面的均温性得到提升,并使其占用空间比单面平铺安装减少26%。
Abstract:
Based on the numerical simulation and experimental research methods, the performance of the liquid cooled radiator used in the rail transit converter was studied and optimized, and the results were compared with the current radiator used in HXD1C and HXD2B locomotives. The results showed that the heat transfer capacity and the flow resistance of the radiator were improved by using the high-efficiency turbulence technology and four parallel channel structures, the temperature rise of the radiator table was 37% and 14.1% lower than that of HXD2B and HXD1C in use, and the flow resistance was 36.9% and 22.3% lower respectively. By using symmetrical double-sided cooling structure, the temperature homogeneity of IGBT installation surface was improved, and the occupied space was 26% less than that of single-sided tiling installation.

参考文献/References:

[1] SHABANY Y.传热学:电力电子器件热管理[M].余小玲, 吴伟烽, 刘飞龙, 译. 北京:机械工业出版社, 2013.

[2] 安德烈亚斯·福尔克, 麦克尔·郝康普. IGBT模块:技术、驱动和应用[M]. 韩金刚, 译. 北京: 机械工业出版社, 2016: 250-253.
[3] MATSUURA K, TANIMOTO Y, SAITO A. Analysis and compact modeling of temperature-dependent switching in SiC IGBT circuits[J]. Solid-State Electronics, 2019, 153: 59-66.
[4] WU Z H, SU X Z, ZHU Y. IGBT junction and coolant temperature estimation by thermal model[J]. Microelectronics Reliability, 2018, 87: 168-182.
[5] 刘杰, 裴念强, 郭开华, 等. 机械泵驱动两相冷却系统特征分析和实验研究[J]. 制冷学报, 2007, 28(2): 27-31.
[6] 杨雄鹏, 张磊, 曹伦. IGBT用3D复合热管散热器的数值仿真与实验验证[J]. 电子机械工程, 2015, 31(6): 22-24.
[7] MUDAWAR I. Recent advances in high-flux, two-phase thermal management[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 1-15.
[8] KANDLIKAR S G. History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review[J]. Journal of Heat Transfer, 2012, 134(3): 1-15.
[9] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 41-57.
[10] 周乃君. 工程流体力学[M]. 北京: 机械工业出版社, 2014: 83-85.
[11] 任艳, 彭琦, 于迪, 等. 基于加速寿命试验的IGBT可靠性预计模型研究[J]. 电力电子技术, 2017, 51(5): 121-124.
[12] HELD M, JACOB P, NICOLETTI G, et al. Fast power cycling test for IGBT modules in traction application[C]//IEEE. Proceedings of Second International Conference on Power Electronics and Drive System. Singapore: IEEE, 1997: 425-430.
[13] 赖伟. 计及低强度热载荷疲劳累积效应的IGBT功率器件寿命模型研究[D]. 重庆: 重庆大学, 2017.

相似文献/References:

[1]忻 力,荣智林,窦泽春,等.IGBT 在轨道交通牵引应用中的可靠性研究[J].机车电传动,2015,(05):1.[doi:10.13890/j.issn.1000-128x.2015.05.001]
 XIN Li,RONG Zhilin,DOU Zechun,et al.Study on IGBT Reliability of Rail Transit Traction Converter Application[J].Electric Drive for Locomotives,2015,(01):1.[doi:10.13890/j.issn.1000-128x.2015.05.001]
[2]朱世武,黄承,姚明,等.基于IGBT浪涌过压预测保护与提高利用率的研究[J].机车电传动,2014,(06):19.[doi:10.13890/j.issn.1000-128x.2014.06.100]
 ZHU Shiwu,HUANG Cheng,YAO Ming,et al.Research on Surge Voltage Prediction Protection and Utilization Improving of IGBT[J].Electric Drive for Locomotives,2014,(01):19.[doi:10.13890/j.issn.1000-128x.2014.06.100]
[3]张大勇.电力电子技术发展与电气牵引创新[J].机车电传动,2014,(05):1.[doi:10.13890/j.issn.1000-128x.2014.05.001]
 ZHANG Dayong.Development of Power Electronics Technology and Innovation of Electrical Traction[J].Electric Drive for Locomotives,2014,(01):1.[doi:10.13890/j.issn.1000-128x.2014.05.001]
[4]翁星方,刘大,邹档兵.高速试验动车组用TGA16型IGBT变流器[J].机车电传动,2014,(02):12.[doi:10.13890/j.issn.1000-128x.2014.02.002]
 WENG Xing-fang,LIU Da,ZOU Dang-bing.TGA16 Type IGBT Converter for High-speed Test EMUs[J].Electric Drive for Locomotives,2014,(01):12.[doi:10.13890/j.issn.1000-128x.2014.02.002]
[5]陈宏,冷丽英,尹梅,等.功率模块风冷散热器性能计算方法研究[J].机车电传动,2014,(01):26.[doi:10.13890/j.issn.1000-128x.2014.01.005]
 CHEN Hong,LENG Li-ying,YIN Mei,et al.Thermal Research for Air-cooling High-power Module Radiator[J].Electric Drive for Locomotives,2014,(01):26.[doi:10.13890/j.issn.1000-128x.2014.01.005]
[6]张祥,陈燕平,忻力,等.新一代集成式TGA23A型地铁牵引逆变器[J].机车电传动,2014,(01):61.[doi:10.13890/j.issn.1000-128x.2014.01.015]
 ZHANG Xiang,CHEN Yan-ping,XIN Li,et al.New-generation Integrated Metro Traction Inverter TGA23A[J].Electric Drive for Locomotives,2014,(01):61.[doi:10.13890/j.issn.1000-128x.2014.01.015]
[7]马伯乐,杨光,忻力.大功率IGBT直接并联应用技术研究[J].机车电传动,2014,(01):11.[doi:10.13890/j.issn.1000-128x.2014.01.032]
 MA Bo-le,YANG Guang,XIN Li.Application Research on Parallel Using of High-power IGBT[J].Electric Drive for Locomotives,2014,(01):11.[doi:10.13890/j.issn.1000-128x.2014.01.032]
[8]刘国友,吴义伯,徐凝华,等.牵引级1500A/3300VIGBT功率模块的热学设计与仿真[J].机车电传动,2013,(01):1.[doi:10.13890/j.issn.1000-128x.2013.01.002]
 LIU Guo-you,WU Yi-bo,XU Ning-hua,et al.Thermal Design and Simulation of 1 500 A/3 300 V IGBT Power Modulein Traction Applications[J].Electric Drive for Locomotives,2013,(01):1.[doi:10.13890/j.issn.1000-128x.2013.01.002]
[9]李碧钰,丁杰,谭渺,等.集成式辅助电源柜的设计及仿真分析[J].机车电传动,2013,(01):48.[doi:10.13890/j.issn.1000-128x.2013.01.028]
 LI Bi-Yu,DING Jie,TAN Miao,et al.Design and Simulation of Integrated Auxiliary Power Cabinet[J].Electric Drive for Locomotives,2013,(01):48.[doi:10.13890/j.issn.1000-128x.2013.01.028]
[10]陈宏,杨春宇,刘革莉,等.国产化6 500 V/200 A高压大功率IGBT的研制[J].机车电传动,2017,(01):1.[doi:10.13890/j.issn.1000-128x.2017.01.001]
 CHEN Hong,YANG Chunyu,LIU Geli,et al.Development of 6 500 V/200 A High-voltage and High-power Localization IGBT[J].Electric Drive for Locomotives,2017,(01):1.[doi:10.13890/j.issn.1000-128x.2017.01.001]

备注/Memo

备注/Memo:
作者简介:宋郭蒙(1993—),男,硕士,主要从事轨道交通大功率变流设备的热设计。
更新日期/Last Update: 2020-01-10