[1]杨闳盛,宋郭蒙,王 雄.IGBT模块与散热器接触界面气隙对散热的影响研究[J].机车电传动,2020,(01):18-21.[doi:10.13890/j.issn.1000-128x.2020.01.004]
 YANG Hongsheng,SONG Guomeng,WANG Xiong.Research on Effect of Air Gap between IGBT Module and Heatsinkon Thermal Performance[J].Electric Drive for Locomotives,2020,(01):18-21.[doi:10.13890/j.issn.1000-128x.2020.01.004]
点击复制

IGBT模块与散热器接触界面气隙对散热的影响研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年01期
页码:
18-21
栏目:
功率半导体技术
出版日期:
2020-01-10

文章信息/Info

Title:
Research on Effect of Air Gap between IGBT Module and Heatsinkon Thermal Performance
文章编号:
1000-128X(2020)01-0018-04
作者:
杨闳盛1宋郭蒙2王 雄2
(1. 株洲中车奇宏散热技术有限公司,湖南 株洲 412007;2. 中车株洲电力机车研究所有限公司,湖南 株洲 412001)
Author(s):
YANG Hongsheng1 SONG Guomeng2 WANG Xiong2
( 1. Zhuzhou CRRC-AVC Thermal Technology Co., Ltd., Zhuzhou, Hunan 412007, China;2. CRRC Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China )
关键词:
IGBT模块散热器气隙IGBT壳温IGBT结温数值仿真
Keywords:
IGBT module heatsink air gap case temperature of IGBT junction temperature of IGBT
分类号:
U264.3+7;TK124
DOI:
10.13890/j.issn.1000-128x.2020.01.004
文献标志码:
A
摘要:
IGBT模块与散热器接触界面使用导热硅脂来降低接触热阻,在轨道交通领域,由于运行环境的频繁振动和温度循环,使硅脂可能发生挥发、流失或干涸,从而在接触界面产生气隙,使传热条件恶化。文章通过数值仿真以及热性能试验2种方法,研究界面气隙对IGBT模块结温和壳温的影响。结果表明,在硅脂气隙产生的初期,气隙对IGBT结温的影响较小;随着气隙扩大,则会使结温明显升高,导致IGBT模块寿命降低,甚至使IGBT模块迅速损坏。
Abstract:
Thermal grease is used to reduce the contact resistance of the contact interface between the IGBT module and the heatsink in the field of rail transit. Because of the frequent vibration and the cyclic temperature fluctuation of the IGBT module, the thermal grease could volatilize, flow out, and even dry up, which could cause an air gap between the module and the heatsink, heat transfer conditions was worsen. The effect of the air gap on the temperature of the IGBT junction and the shell has been studied based on numerical simulation and experiment. The results showed that the air gap has less influence on the junction temperature in the intial stage, with the expansion of the air gap, the junction temperature increase obviously and lead to the declining of the life of the IGBT module, and even IGBT module rapidly damage.

参考文献/References:

[1] 安德烈亚斯·福尔克, 麦克尔·郝康普. IGBT模块:技术、驱动和应用[M]. 韩金刚, 译. 北京: 机械工业出版社, 2016: 118-119.

[2] 张小玲, 陈君, 谢雪松. 基于PID自校准算法的IGBT温升控制实现[J]. 北京工业大学学报, 2016, 42(7): 989-993.
[3] LAI W, CHEN M Y, RAN L, et al. Low ΔTj stress cycle effect in IGBT power module die-attach lifetime modeling[J]. IEEE Transaction on Power Electronics, 2016, 31(9): 6575-6584.
[4] 刘畅. 浅析CRH5型高速动车组的T型连接器烧损的问题[J]. 中国高新技术企业, 2016(22): 95-96.
[5] 丁杰, 李江红, 陈燕平, 等. 流动状态与热源简化方式对IGBT水冷板仿真结果的影响[J]. 机车电传动, 2011(5): 21-25.
[6] 丁杰, 唐玉兔, 忻力, 等. IGBT模块封装的热性能分析[J]. 机车电传动, 2013(2): 9-12.
[7] 任艳, 彭琦, 于迪, 等. 基于加速寿命试验的IGBT可靠性预计模型研究[J]. 电力电子技术, 2017, 51(5): 121-124.
[8] HELD M, JACOB P, NICOLETTI G, et al. Fast power cycling test for IGBT modules in traction application[C]//IEEE. Proceedings of Second International Conference on Power Electronics and Drive Systems. Singapore:IEEE, 1997, 1: 425-430. DOI: 10.1109/PEDS.1997.618742.
[9] 赖伟. 计及低强度热载荷疲劳累积效应的IGBT功率器件寿命模型研究[D]. 重庆: 重庆大学, 2017.

相似文献/References:

[1]张 晓,王佳佳,刘长清,等.辅助逆变器散热器的数值模拟与优化设计[J].机车电传动,2015,(05):42.[doi:10.13890/j.issn.1000-128x.2015.05.012]
 ZHANG Xiao,WANG Jiajia,LIU Changqing,et al.Numerical Simulation and Optimization Design of Auxiliary Power Inverter Heatsink[J].Electric Drive for Locomotives,2015,(01):42.[doi:10.13890/j.issn.1000-128x.2015.05.012]
[2]刘同锋.HXD3型机车牵引变压器油泵油流故障的原因分析及改进[J].机车电传动,2014,(05):108.[doi:10.13890/j.issn.1000-128x.2014.05.031]
[3]陈宏,冷丽英,尹梅,等.功率模块风冷散热器性能计算方法研究[J].机车电传动,2014,(01):26.[doi:10.13890/j.issn.1000-128x.2014.01.005]
 CHEN Hong,LENG Li-ying,YIN Mei,et al.Thermal Research for Air-cooling High-power Module Radiator[J].Electric Drive for Locomotives,2014,(01):26.[doi:10.13890/j.issn.1000-128x.2014.01.005]
[4]王雄,马伯乐,陈明翊,等.轨道车辆大功率IGBT散热器的热设计与试验研究[J].机车电传动,2012,(04):71.[doi:10.13890/j.issn.1000-128x.2012.04.025]
 WANG Xiong,MA Bo-le,CHEN Ming-yi,et al.Thermal Design and Experimental Research on High-power IGBT Module Heatsink Applied in Rail Vehicle[J].Electric Drive for Locomotives,2012,(01):71.[doi:10.13890/j.issn.1000-128x.2012.04.025]

备注/Memo

备注/Memo:
作者简介:杨闳盛(1983—),男,工程师,主要从事热管及热管散热器的研发与制造工作。
更新日期/Last Update: 2020-01-10