[1]赵 炫,蒋 栋,刘自程,等. SiC 功率器件在轨道交通行业中的应用[J].机车电传动,2019,(06):1.[doi:10.13890/j.issn.1000-128x.2020.01.100]
 ZHAO Xuan,JIANG Dong,LIU Zicheng,et al. Application of Silicon Carbide Power Devices in Rail Transit[J].Electric Drive for Locomotives,2019,(06):1.[doi:10.13890/j.issn.1000-128x.2020.01.100]
点击复制

 SiC 功率器件在轨道交通行业中的应用()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2019年06期
页码:
1
栏目:
出版日期:
2019-11-10

文章信息/Info

Title:
 Application of Silicon Carbide Power Devices in Rail Transit
作者:
 赵 炫1蒋 栋1刘自程1马颖涛2王江峰2
 (1. 华中科技大学 电气与电子工程学院,湖北 武汉 430074;2. 动车组和机车牵引与控制国家重点实验室,北京 100081)
Author(s):
 ZHAO Xuan1 JIANG Dong1 LIU Zicheng1 MA Yingtao2 WANG Jiangfeng2
 ( 1. School of Electrical & Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China;2. State Key Laboratory for Traction and Control System of EMU and Locomotive, Beijing 100081, China )
关键词:
 SiC宽禁带半导体牵引系统辅助供电系统轨道交通
Keywords:
 silicon carbide wide-bandgap semiconductor traction systems auxiliary power supply systems rail transit
分类号:
TN304.2+4
DOI:
10.13890/j.issn.1000-128x.2020.01.100
文献标志码:
A
摘要:
 为解决轨道交通牵引及辅助系统的轻量化等问题,宽禁带半导体器件如SiC 器件的应用需求越来越大。SiC 材料具有禁带宽度大、击穿场强高、电子饱和漂移速率快等特性,能满足在中大功率、高温、高频条件下工作的应用要求。简述了SiC 器件相比传统硅基器件的突出优势及商业化和实验室研发情况,介绍了SiC功率器件在轨道交通行业中的发展现状,同时对其在未来轨道交通装备业的发展提出了建议和展望。
Abstract:
 In order to solve the lightweight problems of rail traffic traction and auxiliary systems, the applications of widebandgap semiconductor devices such as silicon carbide devices are increasing rapidly. Silicon carbide has the characteristics of widebandgap, high breakdown voltage and high electron saturation velocity, which can meet the requirements of power electronic device
applied under high power, high temperature and high frequency conditions. The outstanding advantages of silicon carbide devices over traditional silicon-based devices were briefly introduced, as well as the current status of commercialization and laboratory development of silicon carbide devices. The applications of silicon carbide devices in rail transit were described, suggestions and prospects for the using of silicon carbide devices in converters in the future were also provided.

参考文献/References:

 [1] 陈治明, 李守智. 宽禁带半导体电力子器件及其应用[M]. 北京:机械工业出版社, 2009.
[2] RASHID M H. Power Electronics: Circuits, Devices, and Applications[M].3rd Edition. New York: Pearson Education, 2004.
[3] 袁立强, 赵争鸣, 宋高升, 等. 电力半导体器件原理与应用[M].北京: 机械工业出版社, 2011.
[4] 钱照明,张军明,盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报, 2014,34(29): 5149-5161.
[5] EVANS T, HANADA T,NAKANO Y, et al. Development of SiC power devices and modules for automotive motor drive use [C]//IEEE.2013 IEEE International Meeting for Future of Electron Devices, Kansai. Suita: IEEE, 2013:116-117.
[6] 马婷. SiC 功率器件特性及其在逆变器中的应用研究[D]. 南京:南京航空航天大学, 2014.
[7] 赵斌. SiC 功率器件特性及其在Buck 变换器中的应用研究[D].南京: 南京航空航天大学, 2016.
[8] 朱梓悦, 秦海鸿, 董耀文, 等. 宽禁带半导体器件研究现状与展望[J]. 电气工程学报, 2016, 11(1): 1-11.
[9] BALIGA B J, SUNG W J, HAN K J, et al. PRESiCETM: Process Engineered for Manufacturing SiC Electronic Devices[J]. Materials Science Forum, 2018, 924: 523-526.https://doi.org/10.4028/www.
scientific.net/MSF.924.523.
[10] 株洲中车时代电气股份有限公司. 中车时代电气6 英寸碳化硅(SiC)生产线首批芯片试制成功[EB/OL]. (2018-01-30)[2018-10-12]. http://www.sbu.csrzic.com/s/1270-4612-512.html.
[11] Mitsubishi Electric Corporation. Mitsubishi Electric to Launch Silicon-carbide Schottky-barrier Diode[EB/OL]. (2017-03-01)[2018-10-12].http://www.mitsubishielectric.com/news/2017/0301-b.html.
[12] 株洲中车时代电气股份有限公司. 时代电气碳化硅器件项目通过科技成果鉴定 [EB/OL]. (2018-01-03)[2018-10-12]. http://www.tec.crrczic.cc/s/1622-5318-2835.html.
[13] WANG G Y, WANG F, MAGAI G, et al. Performance Comparison of 1200 V 100 A SiC MOSFET and 1200 V 100 A Silicon IGBT[C]//IEEE. 2013 IEEE Energy Conversion Congress and Exposition.
Denver: IEEE, 2013:3230-3234.DOI: 10.1109/ECCE.2013.6647124.
[14] 陈思哲. 高压SiC JEFT 器件的设计、制备与应用研究[D]. 杭州:浙江大学, 2017.
[15] PALA V, VAN BRUNT E , CHENG L, et al. 10 kV and 15 kV Silicon Carbide Power MOSFETs for Next-Generation Energy Conversion and Transmission Systems[C]//IEEE. 2014 IEEE Energy
Conversion Congress and Exposition (ECCE).Pittsburgh: IEEE,2014: 449-454.DOI: 10.1109/ECCE.2014.6953428.
[16] Infineon Technologies AG. Infineon unveils 1200 V Silicon Carbide MOSFET technology for unprecedented efficiency and performance in power conversion designs[EB/OL]. (2016-05-04)[2018-10-12].https://www.infineon.com/cms/en/about-infineon/press/marketnews/2016/INFIPC201605-053.html.
[17] LittelfuseInc. First Littelfuse SiC MOSFET Provides Ultra-Fast Switching in Power Electronics [EB/OL].(2017-10-02)[2018-
10-12].https://www.littelfuse.com/about-us/press-releases/2017/first-littelfuse-sic-mosfet-provides-ultra-fast--switching-in-powerelectronics.aspx.
[18] L i t t e l f u s e I n c . L i t t e l f u s e Announces 1700 V, 1 Ohm SiCMOSFET[EB/OL]. (2018-09-24)[2018-10-12]. https://www.littelfuse.com/about-us/press-releases/2018/09.24-littelfuseannounces-1700v-1-ohm-sic-mosfet.aspx.
[19] SABRI S, VAN BRUNT E, BARKLEY A, et al. New Generation 6.5 kV S iC Power MOSFET[ C ] / /IEEE.2017 I EEE 5th Workshop on Wide Bandgap Power Devices and Applications
(WiPDA).Albuquerque: IEEE, 2017: 246-250.DOI: 10.1109/WiPDA.2017.8170555.
[20] Cree Inc. Cree Introduces Industry’s First 1.7-kV, All-SiC Power Module[EB/OL]. (2014-09-29)[2018-10-12]. http://www.cree.com/
news-events/news/article/cree-introduces-industry-s-first-1-7-kv-allsic-power-module.
[21] LIN H, Villamor A. Power SiC 2018: Materials, Devices, Modules,and Applications 2018[R]. Lyon: Yole Développement, 2018.
[22] SAN-SEBASTIAN J, RUJAS A, Mir L, et al. Performance Improvements Using Silicon Carbide Hybrid IGBT Modules in Traction Application[C]//IEEE. 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference(ESARS-ITEC).Toulouse: IEEE, 2016: 1-6.DOI: 10.1109/ESARSITEC.
2016.7841334.
[23] LIN H. Power SiC 2017: Materials, Devices, Modules, and Applications 2017[R]. Lyon: Yole Développement, 2017.
[24] TAKASHI I, SEIICHI H, TATSUNORI M, et al. 3.3 kV/450 A Full- SiC nHPD2 (next High Power Density Dual) with Smooth Switching [C]//PCIM. PCIM Europe 2017 - International Exhibition and
Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management.Nurnberg:PCIM, 2017: 33-38.
[25] Mitsubishi Electric Corporation. Mitsubishi Electric’s New 6.5 kV Full-SiC Power Semiconductor Module Achieves World’s Highest Power Density[EB/OL]. (2018-01-31)[2018-10-12]. http://www.mitsubishielectric.com/news/2018/0131-a.html.
[26] NAKASHIMA J, FUKUMOTO A, OBIRAKI Y, et al. 6.5-kV Full SiC Power Module (HV100) with SBD-embedded SiCMOSFETs[C]//PCIM. PCIM Europe 2018 - International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management.Nurnberg:PCIM, 2018:441-447.
[27] TETSU N, RYO T, KENJI O,et al. 3.3-kV All-SiC Power Module for Traction System Use[C]//PCIM. PCIM Europe 2017 - International Exhibition and Conference for Power Electronics, Intelligent Motion,Renewable Energy and Energy Management.Nurnberg:PCIM, 2017:51-56.
[28] SHANG F, ARRIBAS A P, KRISHNAMURTHY M. A comprehensive evaluation of SiC devices in traction applications[C]//IEEE.2014 IEEE Transportation Electrification Conference and Expo (ITEC). Dearborn: IEEE,2014: 1-5.DOI: 10.1109/ITEC.2014.6861777.
[29] Mitsubishi Electric Corporation. Mitsubishi Electric to Launch Railcar Traction Inverter with All-SiC Power Module [EB/OL]. (2013-10-25)[2018-10-12].https://www.mitsubishielectric.com/news/2013/pdf/1225.pdf.
[30] Mitsubishi Electric Corporation. Mitsubishi Electric’s Railcar Traction Inverter with All-SiC Power Modules Achieves 40% Power Savings[EB/OL]. (2015-06-22)[2018-10-12].https://www.mitsubishielectric.com/news/2015/pdf/0622-a.pdf.
[31] Mitsubishi electric corporation. Mitsubishi Electric Installs Railcar Traction System with All-SiC Power Modules on Shinkansen Bullet Trains[EB/OL]. (2015-06-25)[2018-10-12].https://www.mitsubishielectric.com/news/2015/pdf/0625. pdf.
[32] ISHIKAWA K, YUKUTAKE S, KONO Y, et al. Traction Inverter that Applies Compact 3.3 kV/1200 A SiC Hybrid Module[C]//IEEE. 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA).Hiroshima:IEEE, 2014: 2140-2144.DOI:10.1109/IPEC.2014.6869884.
[33] CAFGroup. New Silicon-Carbide Technologies for the Rolling Stock of the Future [E/OL]. (2017-09-25)[2018-10-12]. http://www.cafpower.com/en/news/item/368-silicon-carbide-tecnologies.
[34] Bombardier Transportation. Bombardier Celebrates Success of New Energy-Saving Propulsion Technology[EB/OL]. (2018-03-15)[2018-10-12].https://www.bombardier.com/en/media/newsList/details.bt_20180315_bombardier-celebrates-success-of-new-energysaving-p.bombardiercom.html.
[35] Mitsubishi Electric Corporation. Mitsubishi Electric Delivers World’s First SiC Auxiliary Power Supply Systems for Railcars[EB/OL]. (2013-03-26)[2018-1012].https://www.mitsubishielectric.com/news/2013/pdf/0326-a.pdf.
[36] BRENNA M, FOIADELLI F, ZANINELLI D, et al. Application prospective of Silicon Carbide (SiC) in railway vehicles[C]//IEEE.2014 AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer (AEIT). Trieste:IEEE, 2014: 1-6.DOI: 10.1109/AEIT.2014.7002062.
[37] MÄRZ R,HORFFR, HELSPER M, et al. Requirements to change from IGBT to Full SiC modules in an on-board railway power supply[C]//IEEE. 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe).Geneva: IEEE,2015: 1-10.DOI: 10.1109/EPE.2015.7309088.
[38] LIN H. Power SiC 2016: Materials, Devices, Modules, and Applications 2016[R]. Lyon: Yole Développement. 2016.

相似文献/References:

[1]张大勇.电力电子技术发展与电气牵引创新[J].机车电传动,2014,(05):1.[doi:10.13890/j.issn.1000-128x.2014.05.001]
 ZHANG Dayong.Development of Power Electronics Technology and Innovation of Electrical Traction[J].Electric Drive for Locomotives,2014,(06):1.[doi:10.13890/j.issn.1000-128x.2014.05.001]
[2]丁荣军,张志学,李红波. 轨道交通能源互联网的思考[J].机车电传动,2016,(01):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
 DING Rongjun,ZHANG Zhixue,LI Hongbo. An Overview on Rail Transit Energy Internet[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
[3]胡基贵,刘天赋. 从现代有轨电车技术的发展看中国研究方向[J].机车电传动,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.02.001]
 Hu Jigui,Liu Tianfu. Technical Development Direction of China Modern Tramcar[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.02.001]
[4]董利芳,穆俊斌,张 闯,等. 基于均值法的地铁网络通信配置方案设计[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.106]
 DONG Lifang,MU Junbin,ZHANG Chuang,et al. Design of Metro Network Communication Configuration based on Mean Value[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.106]
[5]付 彬,罗世辉,刘晓宇,等. 带径向机构的铰接式单轴转向架独立轮对导向特点分析[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.101]
 FU Bin,LUO Shihui,LIU Xiaoyu,et al. Steering Characteristic of Independent Wheelset of Articulated Single-axle Bogie with Radial Mechanism[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.101]
[6]倪大成,应 婷,张 宇. 机车牵引主电路接地检测回路共模电压研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.105]
 NI Dacheng,YING Ting,ZHANG Yu. Research on Grounding-protection Equipment Common-mode Voltage of Electric Locomotive Traction Main Circuit[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.105]
[7]汤 永,李 辉,张 涛. 基于闭塞时间模型的列车追踪间隔时间研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.104]
 Tang Yong,Li Hui,ZHANG Tao. Research on Train Headway based on Blocking Time Model[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.104]
[8]武学良,刘银涛,郝占红. 电力机车牵引电机通风系统比较[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.103]
 WU Xueliang,LIU Yintao,HAO Zhanhong. Summarization of Electric Locomotive Traction Ventilation System[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.103]
[9]张兴宝. 地铁列车制动距离及制动减速度相关问题研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.107]
 ZHANG Xingbao. Research on the Related Problems of Braking Distance and Deceleration of Metro Trains[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.107]
[10]章志兵,张志学,黄 超. 机车车载谐波治理装置的研制[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.100]
 ZHANG Zhibing,ZHANG Zhixue,HUANG Chao. Development of Harmonic Restraining Devices on Locomotives[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.100]

备注/Memo

备注/Memo:
 作者简介:赵 炫(1995—),男,硕士研究生,主要研究方向为功率变换技术。
更新日期/Last Update: 2019-11-11