[1]王艺璇,陈恩利,戚壮,等.抗蛇行减振器阻尼孔径变化对高速车辆动力学性能的影响分析[J].机车电传动,2018,(02):32-36.[doi:10.13890/j.issn.1000-128x.2018.02.007]
 WANG Yixuan,CHEN Enli,QI Zhuang,et al.Effects of Damping Hole’s Diameter Change of Anti-hunting Damper on Dynamic Performance of High-speed Vehicle[J].Electric Drive for Locomotives,2018,(02):32-36.[doi:10.13890/j.issn.1000-128x.2018.02.007]
点击复制

抗蛇行减振器阻尼孔径变化对高速车辆动力学性能的影响分析()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2018年02期
页码:
32-36
栏目:
研究开发
出版日期:
2018-03-31

文章信息/Info

Title:
Effects of Damping Hole’s Diameter Change of Anti-hunting Damper on Dynamic Performance of High-speed Vehicle
文章编号:
1000-128X(2018)02-0032-05
作者:
王艺璇陈恩利戚壮刘鹏飞张 琳
(石家庄铁道大学河北交通安全与控制重点实验室,河北 石家庄 050043)
Author(s):
WANG Yixuan CHEN Enli QI Zhuang LIU Pengfei ZHANG Lin
( Hebei Provincial Key Laboratory of Traffic Safety and Control, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China )
关键词:
抗蛇行减振器阻尼孔直径Adams/Rail动力学仿真
Keywords:
anti-hunting damper damping hole’s diameter Adams/Rail dynamics simulation
分类号:
U292.91+4;U260.331+.5
DOI:
10.13890/j.issn.1000-128x.2018.02.007
文献标志码:
A
摘要:
为研究抗蛇行减振器阻尼孔径变化对列车运行稳定性、平稳性、曲线通过能力的影响,通过阻尼孔的压力- 流量方程得到减振器输出阻尼力与其阻尼孔径关系,在Matlab 中建立减振器阻尼特性模型,分析抗蛇行减振器在不同阻尼孔径时阻尼特性的变化,将不同的阻尼特性曲线输入到Adams/Rail 中,分别建立抗蛇行减振器阻尼孔径不同的高速车辆拖车整车模型,对不同抗蛇行减振器阻尼孔径的列车进行多工况分析。结果表明:在稳定性方面,抗蛇行减振器阻尼孔径的减小可以提高列车非线性临界速度。在平稳性方面,阻尼孔径的变化主要影响列车的轮轴横向力和横向平稳性指标,对垂向平稳性影响较小。在通过曲线时,脱轨系数和轮重减载率随着阻尼孔径的减小而降低,但变化不大。
Abstract:
In order to research the effect of the damping hole’s change of anti-hunting damper on the vehicle’s stability, running performance and the curve passage capability, the relation between the damper force and the damping hole’s diameter was calculated by the pressure-flow equation. The change of the anti-hunting damper’s diameter was analyzed by software Matlab and imported into software Adams/Rail. The multi-body dynamic models of high-speed vehicle with different damping characteristic were set up in Adams/ Rail. And the models were calculated under various working conditions. Results were that: In terms of the stability of the vehicle, the nonlinear critical velocity of the high-speed train could increase by the influence of the damping hole’s decline. And in terms of the running performance of the vehicle, the wheel/rail lateral force and the lateral ride comfort index were influenced by the change of the damping hole’s diameter significantly. However it had little affect on the derailment and the unloading of the vehicle on curve track.

参考文献/References:

[1]刘建新,王开云. 抗蛇行减振器对机车运行平稳性的影响[J]. 交通运输工程学报,2006,6(4):1-4.
[2] Andres L S, Diaz S E. Flow visualization and forces from a squeeze film damper operating with natural air entrainment [J]. Journal of Tribology,2003,125(2):325-333.
[3]EYRES R D, CHAMPNEYS A R, LIEVEN N A J. Modeling and Dynamics Response of a Damper with Relief Valve[J]. Nonlinear Dynamics,2005,40:119-147.
[4]Cafferty S, Worden K, Tomlinson G, et al. Characterization of automotive shock absorbers using random excitation[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,1995,209(4):239-248.
[5]徐腾养,池茂儒,郭兆团,等. 抗蛇行减振器动态特性研究[J]. 机车电传动,2017(2):53-56.
[6]杨亮亮,罗世辉,傅茂海,等. 抗蛇行减振器安装刚度对弹性构架车辆动力学性能影响[J]. 机车电传动,2012(6):15-18.
[7]何远,王勇. 抗蛇行减振器串联刚度对高速动车组运行稳定性的影响[J]. 机车电传动,2015(3):26-29.
[8]Alonso A. Yaw Damper modeling and its influence on railway dynamics stability[J]. Vehicle System Dynamics, 2011, 49(9): 1367-1387.
[9]Purdy D J. Theoretical and experimental investigation into an adjustable automotive damper[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214(3):265-283.
[10]Shams M, Ebrahimi R, Raoufi A, et al. CFD-FEA analysis of hydraulic shock absorber valve behavior[J]. International Journal of Automotive Technology,2007,8(5):615-622.
[11]段艳文. 高速列车减振器阻尼特性的影响因素分析[J]. 交通运输工程与信息学报,2014,12(4):91-96.
[12]樊友权. 列车车辆减振器阻尼系统及关键部件失效研究[D]. 成都:西南交通大学,2014.
[13]李壮云. 液压气动与液力工程手册[M]. 北京:电子工业出版社, 2008.

相似文献/References:

[1]何 远,王 勇.抗蛇行减振器串联刚度对高速动车组运行稳定性的影响[J].机车电传动,2015,(03):26.[doi:10.13890/j.issn.1000-128x.2015.03.007]
 HE Yuan,WANG Yong.Influence of Anti-yaw Damper Series Stiffnesson Running Stability of High-speed EMUs[J].Electric Drive for Locomotives,2015,(02):26.[doi:10.13890/j.issn.1000-128x.2015.03.007]
[2]徐腾养,池茂儒,田向阳,等.抗蛇行减振器内部油液温度对其动态特性的影响[J].机车电传动,2016,(06):43.[doi:10.13890/j.issn.1000-128x.2016.06.010]
 XU Tengyang,CHI Maoru,TIAN Xiangyang,et al.Influence of Oil Temperature of Yaw Damper on Dynamic Performance[J].Electric Drive for Locomotives,2016,(02):43.[doi:10.13890/j.issn.1000-128x.2016.06.010]
[3]侯建文,刘建新,陈迪来,等.抗蛇行减振器横向安装位置对机车动力学性能的影响[J].机车电传动,2013,(04):32.[doi:10.13890/j.issn.1000-128x.2013.04.015]
 HOU Jian-wen,LIU Jian-xin,CHEN Di-lai,et al.Influence of Lateral Mounting Position of Anti-hunting Motion Dampers on Locomotive Dynamic Performance[J].Electric Drive for Locomotives,2013,(02):32.[doi:10.13890/j.issn.1000-128x.2013.04.015]
[4]徐腾养,池茂儒,郭兆团,等. 抗蛇行减振器动态特性研究[J].机车电传动,2017,(02):1.[doi:10.13890/j.issn.1000-128x.2017.02.102]
 XU Tengyang,CHI Maoru,GUO Zhaotuan,et al. Research on Dynamic Performance of Yaw Damper[J].Electric Drive for Locomotives,2017,(02):1.[doi:10.13890/j.issn.1000-128x.2017.02.102]
[5]徐腾养,池茂儒,郭兆团,等.抗蛇行减振器动态特性研究[J].机车电传动,2017,(02):53.[doi:10.13890/j.issn.1000-128x.2017.02.102]
 XU Tengyang,CHI Maoru,GUO Zhaotuan,et al.Research on Dynamic Performance of Yaw Damper[J].Electric Drive for Locomotives,2017,(02):53.[doi:10.13890/j.issn.1000-128x.2017.02.102]
[6]杨亮亮,罗世辉,傅茂海,等.抗蛇行减振器安装刚度对弹性构架车辆动力学性能影响[J].机车电传动,2012,(06):15.[doi:10.13890/j.issn.1000-128x.2012.06.019]
 YANG Liang-liang,LUO Shi-hui,FU Mao-hai,et al.Influence of Anti-yaw Damper Mounted Stiffness on Vehicle Dynamics Performance Based on Flexible Frame[J].Electric Drive for Locomotives,2012,(02):15.[doi:10.13890/j.issn.1000-128x.2012.06.019]
[7]吴会超,霍文彪,卢 权,等. 不同抗蛇行减振器对动车组蛇行失稳的影响研究[J].机车电传动,2017,(05):1.[doi:10.13890/j.issn.1000-128x.2017.05.101]
 WU Huichao,HUO Wenbiao,LU Quan,et al. Influence Study of Different Anti-Yaw Dampers on EMUs Hunting Instability[J].Electric Drive for Locomotives,2017,(02):1.[doi:10.13890/j.issn.1000-128x.2017.05.101]
[8]吴会超,霍文彪,卢权,等.不同抗蛇行减振器对动车组蛇行失稳的影响研究[J].机车电传动,2017,(05):30.[doi:10.13890/j.issn.1000-128x.2017.05.101]
 WU Huichao,HUO Wenbiao,LU Quan,et al.Influence Study of Different Anti-Yaw Dampers on EMUs Hunting Instability[J].Electric Drive for Locomotives,2017,(02):30.[doi:10.13890/j.issn.1000-128x.2017.05.101]
[9]高红星,等.抗蛇行减振器温变特性及其对车辆稳定性影响[J].机车电传动,2017,(05):48.[doi:10.13890/j.issn.1000-128x.2017.05.012]
 GAO Hongxing,XU Tengyang,et al.Temperature Characteristic of Yaw Damper and Its Effect on Vehicle Stability[J].Electric Drive for Locomotives,2017,(02):48.[doi:10.13890/j.issn.1000-128x.2017.05.012]
[10]陈龙,戴焕云,郭兆团,等.抗蛇行减振器特性与高速列车适应性分析[J].机车电传动,2018,(03):79.[doi:10.13890/j.issn.1000-128x.2018.03.016]
 CHEN Long,DAI Huanyun,GUO Zhaotuan,et al.The Analysis of Characteristics of Anti-yaw Damper and High-speed Trains Adaptability[J].Electric Drive for Locomotives,2018,(02):79.[doi:10.13890/j.issn.1000-128x.2018.03.016]

备注/Memo

备注/Memo:
作者简介:王艺璇(1992-),男,硕士研究生,研究方向为轨道车辆系统动力学。
更新日期/Last Update: 2018-03-10