[1]徐腾养,池茂儒,郭兆团,等. 抗蛇行减振器动态特性研究[J].机车电传动,2017,(02):1.[doi:10.13890/j.issn.1000-128x.2017.02.102]
 XU Tengyang,CHI Maoru,GUO Zhaotuan,et al. Research on Dynamic Performance of Yaw Damper[J].Electric Drive for Locomotives,2017,(02):1.[doi:10.13890/j.issn.1000-128x.2017.02.102]
点击复制

 抗蛇行减振器动态特性研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2017年02期
页码:
1
栏目:
研究开发
出版日期:
2017-03-10

文章信息/Info

Title:
 Research on Dynamic Performance of Yaw Damper
作者:
 徐腾养1池茂儒1郭兆团1匡成骁1徐小毛2
 (1. 西南交通大学牵引动力国家重点实验室,四川 成都 610031;2. 华东交通大学软件学院,江西 南昌 330013)
Author(s):
 XU Tengyang1 CHI Maoru1 GUO Zhaotuan1 KUANG Chengxiao1 XU Xiaomao2
 ( 1. Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;2. Software Institute, East China Jiaotong University, Nanchang, Jiangxi 330013, China )
关键词:
 抗蛇行减振器动态特性安装长度动态阻尼动态刚度
Keywords:
 yaw damper dynamic performance installation length dynamic damping dynamic stiffness
分类号:
U292.91+4;U260.331+.5
DOI:
10.13890/j.issn.1000-128x.2017.02.102
文献标志码:
A
摘要:
 车辆在实际线路运行的过程中,减振器会表现出复杂的动态特性,新减振器与服役过一段时间的减振器表现出的动态特性会有所变化,减振器不同安装长度也会表现出不同的动态特性。主要针对新的抗蛇行减振器与服役一段时间后的减振器以及不同安装长度时的动态特性分别进行了研究。结果表明:减振器在服役一段时间后,动态刚度、动态阻尼均有所下降(小幅值时比较明显),随着幅值的增大,二者之间的变化越来越小;不同安装长度时,随着长度增加,动态刚度、动态阻尼均有所减小,而动态阻尼在低幅以及高幅低频时,随着长度的减小而增大现象比较明显,在高幅高频时,动态阻尼变化不是很明显。
Abstract:
 Yaw damper would manifest complex dynamic performance when vehicles run. Different dynamic performance would happen between new yaw damper and old yaw damper. Different installation length would show various dynamic feature. The analysis on new damper and old damper and various installation length were discussed. It could be concluded that dynamic stiffness and dynamic damping were both reducing when damper served for a long time, which was more obvious when amplitude was small, and the difference between new damper and old damper would become smaller with the increasing of amplitude; The dynamic stiffness and dynamic damping would reduce with the increasing installation length; Dynamic damping would reduce with the augment of installation length with small amplitude or big amplitude and low frequency; There was no obvious changes between dynamic damping when amplitude and frequency were big enough.

参考文献/References:

 [1]杨国桢,王福天. 机车车辆液压减振器[M]. 北京:中国铁道出版社,2002.
[2]欧红波. 抗蛇行减振器特性试验及对动力学性能影响研究[D].成都:西南交通大学,2016.
[3]杨东晓. 铁道车辆抗蛇行减振器动态特性研究[D]. 成都:西南交通大学,2015.
[4]徐腾养,池茂儒,李涛. 抗蛇行减振器动态性能研究[J]. 机械,2016,8(43):1-6.
[5]张海,王成国,刘金朝. 不同油液流动类型的抗蛇行减振器特性对比研究[J]. 铁道机车车辆,2014,34(2):10-15.
[6]汪群生,曾京,魏来. 抗蛇行减振器安装角度对车辆运行性能的影响[J]. 铁道车辆,2016,54(5):1-4.
[7]李异. 铁路液压减振器的应用研究[D]. 成都:西南交通大学,2007.
[8]机车车辆油压减振器技术条件:TB/T1491:2015[S].
[9]铁路应用- 悬挂元件- 油压减振器:BS EN 13802:2013[S].

相似文献/References:

[1]何 远,王 勇.抗蛇行减振器串联刚度对高速动车组运行稳定性的影响[J].机车电传动,2015,(03):26.[doi:10.13890/j.issn.1000-128x.2015.03.007]
 HE Yuan,WANG Yong.Influence of Anti-yaw Damper Series Stiffnesson Running Stability of High-speed EMUs[J].Electric Drive for Locomotives,2015,(02):26.[doi:10.13890/j.issn.1000-128x.2015.03.007]
[2]丁荣军,张志学,李红波. 轨道交通能源互联网的思考[J].机车电传动,2016,(01):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
 DING Rongjun,ZHANG Zhixue,LI Hongbo. An Overview on Rail Transit Energy Internet[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
[3]胡基贵,刘天赋. 从现代有轨电车技术的发展看中国研究方向[J].机车电传动,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.02.001]
 Hu Jigui,Liu Tianfu. Technical Development Direction of China Modern Tramcar[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.02.001]
[4]董利芳,穆俊斌,张 闯,等. 基于均值法的地铁网络通信配置方案设计[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.106]
 DONG Lifang,MU Junbin,ZHANG Chuang,et al. Design of Metro Network Communication Configuration based on Mean Value[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.05.106]
[5]付 彬,罗世辉,刘晓宇,等. 带径向机构的铰接式单轴转向架独立轮对导向特点分析[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.101]
 FU Bin,LUO Shihui,LIU Xiaoyu,et al. Steering Characteristic of Independent Wheelset of Articulated Single-axle Bogie with Radial Mechanism[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.05.101]
[6]倪大成,应 婷,张 宇. 机车牵引主电路接地检测回路共模电压研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.105]
 NI Dacheng,YING Ting,ZHANG Yu. Research on Grounding-protection Equipment Common-mode Voltage of Electric Locomotive Traction Main Circuit[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.05.105]
[7]汤 永,李 辉,张 涛. 基于闭塞时间模型的列车追踪间隔时间研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.104]
 Tang Yong,Li Hui,ZHANG Tao. Research on Train Headway based on Blocking Time Model[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.05.104]
[8]武学良,刘银涛,郝占红. 电力机车牵引电机通风系统比较[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.103]
 WU Xueliang,LIU Yintao,HAO Zhanhong. Summarization of Electric Locomotive Traction Ventilation System[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.05.103]
[9]张兴宝. 地铁列车制动距离及制动减速度相关问题研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.107]
 ZHANG Xingbao. Research on the Related Problems of Braking Distance and Deceleration of Metro Trains[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.05.107]
[10]章志兵,张志学,黄 超. 机车车载谐波治理装置的研制[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.100]
 ZHANG Zhibing,ZHANG Zhixue,HUANG Chao. Development of Harmonic Restraining Devices on Locomotives[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.05.100]
[11]吴会超,霍文彪,卢 权,等. 不同抗蛇行减振器对动车组蛇行失稳的影响研究[J].机车电传动,2017,(05):1.[doi:10.13890/j.issn.1000-128x.2017.05.101]
 WU Huichao,HUO Wenbiao,LU Quan,et al. Influence Study of Different Anti-Yaw Dampers on EMUs Hunting Instability[J].Electric Drive for Locomotives,2017,(02):1.[doi:10.13890/j.issn.1000-128x.2017.05.101]

备注/Memo

备注/Memo:
 作者简介:徐腾养(1992-),男,硕士研究生,研究方向为车辆系统动力学。
更新日期/Last Update: 2017-03-10