[1]刘国友,覃荣震,Ian Deviny,等.牵引用3 300 V IGBT/FRD芯片组设计与开发[J].机车电传动,2013,(02):5-8.[doi:10.13890/j.issn.1000-128x.2013.02.002]
 LIU Guo-you,QIN Rong-zhen,Ian Deviny,et al.3 300 V IGBT / FRD Chipset Design and Development for Traction Application[J].Electric Drive for Locomotives,2013,(02):5-8.[doi:10.13890/j.issn.1000-128x.2013.02.002]
点击复制

牵引用3 300 V IGBT/FRD芯片组设计与开发()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2013年02期
页码:
5-8
栏目:
技术专题
出版日期:
2013-03-10

文章信息/Info

Title:
3 300 V IGBT / FRD Chipset Design and Development for Traction Application
文章编号:
1000-128X(2013)02-0005-04
作者:
刘国友覃荣震Ian Deviny黄建伟
(株洲南车时代电气股份有限公司功率半导体研发中心,英国 林肯 LN6 3LF)
Author(s):
LIU Guo-you QIN Rong-zhen Ian Deviny HUANG Jian-wei
( Power Semiconductor R& D Center, Zhuzhou CSR Times Electric Co., Ltd., Lincoln, LN6 3LF, United Kingdom )
关键词:
绝缘栅双极晶体管轨道交通终端结构台面栅注入效率元胞
Keywords:
insulated gate bipolar transistor (IGBT) rail transit termination structure terraced gateinjection efficiency cell
分类号:
TN303;TN34
DOI:
10.13890/j.issn.1000-128x.2013.02.002
摘要:
针对轨道交通绝缘栅双极晶体管(IGBT)的应用特点,利用计算机仿真技术对终端结构进行优化, 提高耐压特性; 采用台面栅结构, 提高开关速度; 通过控制载流子注入效率, 改善Vceon 与Eoff 的折中关系,降低芯片损耗;采用先进元胞设计技术,提高芯片短路能力,从而提高芯片可靠性;通过超低阳极掺杂控制阳极注入效率,免除局部寿命控制,降低FRD的反向漏电流。研究开发了3 300 V IGBT及其配套FRD芯片,满足轨道交通的应用要求。
Abstract:
According to the IGBT characteristics and requirements for traction application, the simulation technique was used on the termination structure design to improve the blocking voltage. The terraced gate structure was developed to increase the switching speed, by adopting the carrier injection efficiency to realize a trade off between on state loss and turn off energy to reduce the total IGBT loss. The advanced cell structure design technique was adopted to optimize the short circuit capability to enhance the reliability. The ’super low P emitter’ was developed to get rid of the local lifetime control to reduce the FRD reverse leakage current. A 3 300 V IGBT/FRD had been developed, which could meet the requirements for traction application.

参考文献/References:

[1] H-G Eckel,et al. A new Family of Modular IGBT Converters for Traction Applications[J]. EPE,2005:1-10.
[2] Mark M Bakran, et al. Next Generation of IGBT-Modules Applied to High Power Traction[J]. power electronics and applications, 2007:1-9.
[3] 陈星弼. 场限环的简单理论[J]. 电子学报,1988(3).
[4] Praneet Bhatnagar, Peter Waind, Lee Coulbeck, et al. Improvements in SOA Ruggedness of 6.5 kV IGBTs[J]. EPE,2011:1-8.
[5] sven Matthias, et al. 3300V HiPak modules for high-temperature applications[J]. PCIM,2011:657-662.
[6]MRahimo, et al. Novel Soft-Punch-Through (SPT) 1700V IGBT Sets Benchmark on Technology Curve[J]. PCIM,2001:1-5.
[7] S Dewar, et al. Soft Punch Through (SPT) Setting New Standards in 1200V IGBT[J]. PCIM,2000:1-8.
[8] S Huang, et al. The injection efficiency controlled IGBT[J]. IEEE Electron Device Letters, 2002, 23(2) :88-90.
[9] Inoue T, et al. New collector design concept for 4.5 kV injection enhanced gate transistor (IEGT)[J]. ISPSD, 2002:49-52.
[10]Yusuke Kobayashi, et al. Analysis of rapid tail current decay in IGBTs with low dose emitter[J]. ISPSD,2012:141-144.
[11]Ajith Balachandran, et al. Enhanced short circuit performance of 3.3 kV clustered IGBT with RTA anode[J]. ISPSD,2012: 169-172.
[12]M Rahimo, A Kopta, S Linder. Novel enhance planar IGBT technology rated up to 6.5kV for low losses and higher SOA capability[J]. ISPSD,2006:1-4.
[13]A Kopta, et al. High Voltage SPT+ HiPak Modules Rated at 4 500 V[J]. PCIM,2007:1-6.
[14]Chong-Man Yun, et al. A self-aligned latch-free IGBT with sidewall diffused n+ emitter[J]. International Symposium on Power Semiconductor Devices and Ics-ISPSD,1995:196-200.

相似文献/References:

[1]王 奇.轨道交通安全相关系统安全完整性的探讨[J].机车电传动,2015,(02):1.[doi:10.13890/j.issn.1000-128x.2015.02.001]
 WANG Qi.Discussion on Safety Integrity of Safety-related System for Railway Application[J].Electric Drive for Locomotives,2015,(02):1.[doi:10.13890/j.issn.1000-128x.2015.02.001]
[2]李江红,胡云卿,彭辉水,等.轨道交通粘着利用控制的关键技术与方法[J].机车电传动,2014,(06):1.[doi:10.13890/j.issn.1000-128x.2014.06.001]
 LI Jianghong,HU Yunqing,PENG Huishui,et al.Key Techniques and Design Methods of Adhesion Control in Rail Transportation[J].Electric Drive for Locomotives,2014,(02):1.[doi:10.13890/j.issn.1000-128x.2014.06.001]
[3]丁荣军,张志学,李红波. 轨道交通能源互联网的思考[J].机车电传动,2016,(01):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
 DING Rongjun,ZHANG Zhixue,LI Hongbo. An Overview on Rail Transit Energy Internet[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
[4]李江红,陈华国,胡照文,等.高效抑制机车空转和滑行的卸载新算法[J].机车电传动,2015,(06):6.[doi:10.13890/j.issn.1000-128x.2015.06.002]
 LI Jianghong,CHEN Huaguo,HU Zhaowen,et al.Deloading Algorithm for Highly Effective Suppressing Locomotive Slip and Slide[J].Electric Drive for Locomotives,2015,(02):6.[doi:10.13890/j.issn.1000-128x.2015.06.002]
[5]张利芝.我国轨道交通牵引电气设备与系统领域技术标准发展综述[J].机车电传动,2015,(06):11.[doi:10.13890/j.issn.1000-128x.2015.06.003]
 ZHANG Lizhi.Reviews of China Rail Transit Traction Electric Equipment and System Technology Standard Development[J].Electric Drive for Locomotives,2015,(02):11.[doi:10.13890/j.issn.1000-128x.2015.06.003]
[6]李阿敏,汪普义,詹永瑞,等.轨道交通受电弓/ 柔性接触网系统受流特性的研究[J].机车电传动,2016,(03):46.[doi:10.13890/j.issn.1000-128x.2016.03.011]
 LI Amin,WANG Puyi,ZHAN Yongrui,et al.Research on Rail Transit Current Receiving Characteristics of Pantograph/Flexible Catenary System[J].Electric Drive for Locomotives,2016,(02):46.[doi:10.13890/j.issn.1000-128x.2016.03.011]
[7]佟璐,申萍,王立德,等.基于深度图像的列车乘客目标识别技术研究[J].机车电传动,2014,(02):46.[doi:10.13890/j.issn.1000-128x.2014.02.031]
 TONG Lu,SHEN Ping,WANG Li-de,et al.Human Recognition Based on the Depth Image in Rail Vehicle[J].Electric Drive for Locomotives,2014,(02):46.[doi:10.13890/j.issn.1000-128x.2014.02.031]
[8]彭宝林,林平.新型轨道交通司机控制器研究[J].机车电传动,2014,(02):58.[doi:10.13890/j.issn.1000-128x.2014.02.012]
 PENG Bao-lin,LIN Ping.Study of New Rail Transit Driver Controller[J].Electric Drive for Locomotives,2014,(02):58.[doi:10.13890/j.issn.1000-128x.2014.02.012]
[9]刘国友,覃荣震,黄建伟,等.牵引级高压IGBT模块短路特性研究及其优化[J].机车电传动,2014,(01):7.[doi:10.13890/j.issn.1000-128x.2014.01.031]
 LIU Guo-you,QIN Rong-zhen,HUANG Jian-wei,et al.Research and Optimization of High-voltage IGBT Module Short CircuitCharacteristics for Traction Application[J].Electric Drive for Locomotives,2014,(02):7.[doi:10.13890/j.issn.1000-128x.2014.01.031]
[10]王俭朴,任成龙. 考虑电流约束的轨道车辆车载超级电容优化配置[J].机车电传动,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.06.108]
 WANG Jianpu REN Chenglong. Optimization Configuration for On-board Super Capacitor of Railway Transit Considering the Current Constraint[J].Electric Drive for Locomotives,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.06.108]
[11]刘国友,覃荣震,黄建伟,等.高功率密度IGBT模块的研发与特性分析[J].机车电传动,2014,(02):6.[doi:10.13890/j.issn.1000-128x.2014.02.030]
 LIU Guo-you,QIN Rong-zhen,HUANG Jian-wei,et al.Development and Characterization of High Power Density IGBT Module[J].Electric Drive for Locomotives,2014,(02):6.[doi:10.13890/j.issn.1000-128x.2014.02.030]
[12]丁荣军,刘国友.轨道交通用高压IGBT技术特点及其发展趋势[J].机车电传动,2014,(01):1.[doi:10.13890/j.issn.1000-128x.2014.01.002]
 DING Rong-jun,LIU Guo-you.Technical Features and Development Trend of High-voltageIGBT for Rail Transit Traction Application[J].Electric Drive for Locomotives,2014,(02):1.[doi:10.13890/j.issn.1000-128x.2014.01.002]
[13]刘国友,罗海辉,李群锋,等.轨道交通用750 A/6 500 V 高功率密度IGBT 模块[J].机车电传动,2016,(06):21.[doi:10.13890/j.issn.1000-128x.2016.06.005]
 LIU Guoyou,LUO Haihui,LI Qunfeng,et al.750 A/6 500 V High Power Density IGBT Module for Rail Transit Application[J].Electric Drive for Locomotives,2016,(02):21.[doi:10.13890/j.issn.1000-128x.2016.06.005]

备注/Memo

备注/Memo:
作者简介:刘国友(1966-),男,高级工程师(教授级),主要从事功率半导体技术研究、产品开发及其产业化工作。
更新日期/Last Update: 2013-03-10