[1]李永华,李会杰,王剑,等.基于双响应面的地铁车辆底架稳健优化设计[J].机车电传动,2019,(03):120.[doi:10.13890/j.issn.1000-128x.2019.03.026]
 LI Yonghua,LI Huijie,WANG Jian,et al.Robust Optimization Design of Subway Underframe Based on Dual Response Surface[J].Electric Drive for Locomotives,2019,(03):120.[doi:10.13890/j.issn.1000-128x.2019.03.026]
点击复制

基于双响应面的地铁车辆底架稳健优化设计()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2019年03期
页码:
120
栏目:
城市轨道车辆
出版日期:
2019-05-10

文章信息/Info

Title:
Robust Optimization Design of Subway Underframe Based on Dual Response Surface
文章编号:
1000-128X(2019)03-0120-05
作者:
李永华1李会杰1王剑1智鹏鹏2盛自强2王百发1
(1.大连交通大学机车车辆工程学院,辽宁 大连 116028; 2.大连交通大学机械工程学院,辽宁 大连 116028)
Author(s):
LI Yonghua1 LI Huijie1 WANG Jian1 ZHI Pengpeng1 SHENG Ziqiang2 WANG Baifa1
( 1. College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, China; 2. School of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, China )
关键词:
地铁底架双响应面稳健性设计动力学性能有限元分析尺寸优化
Keywords:
subway underframe dual response surface robust design dynamics performance FEA size optimization
分类号:
U231;U270.32
DOI:
10.13890/j.issn.1000-128x.2019.03.026
文献标志码:
A
摘要:
为了减少地铁车辆底架优化过程中由于不确定性因素引起的目标响应分散性问题,利用双响应面模型对其进行稳健优化设计。首先利用Monte Carlo方法筛选出对目标响应影响较大的设计变量,进行拉丁超立方抽样得到设计变量及目标响应的样本点;再运用最小二乘法对样本点进行拟合,求得目标响应的多项式响应面函数,对其进行均值估计和方差估计,得出均值和方差的响应面函数;最后以方差函数最小为优化目标,以均值函数为约束条件建立稳健优化模型,采用内点法对其进行优化求解。研究结果表明,通过双响应面模型进行稳健优化后底架结构的抗外界因素干扰能力提高,并且强度得到改善,质量减小。
Abstract:
In order to reduce the dispersion of the objective response due to uncertain factors in the subway underframe’s optimization process, a robust optimization design method based on dual response surface model was proposed. Firstly, Monte Carlo method was used to select the design variables which had great influence on the target response, and Latin hypercube sampling was used to get the sample points of the design variables and the target response. Then, the least square method was used to fit the sample points, and the polynomial response surface function of the target response was obtained, the mean and variance of the polynomial response surface function were estimated, and the response surface function of the mean and variance was obtained. Taking the minimum variance function as the optimization objective and the mean function as the constraints, the robust optimization model was established and solved by the interior point method. The results show that the anti-interference ability and strength of the structure is improved as well as the mass is reduced after the robust optimization of the double response surface model.

参考文献/References:

[1] 李永华, 李会杰, 王剑, 等. 基于损失模型的动车组排障器稳健优化设计[J]. 机械设计与制造工程, 2018, 47(8): 6-10.[2] LEE D H, KIM K J. Interactive weighting of bias and variance in dual response surface optimization[J]. Expert Systems with Applications, 2012, 39(5): 5900-5906. [3] 郎利辉, 杨希英, 孙志莹, 等. 基于响应面法的汽车覆盖件充液成形工艺参数多目标优化[J]. 汽车工程, 2015, 37(4): 480-484. [4] 王杰, 谢延敏, 乔良, 等. 基于响应面法的板料成形容差稳健设计[J]. 锻压技术, 2014, 39(9): 21-26. [5] HAN S W, JUNG H S. Weight reducing of aluminum extrusion profiles of a railway-car body based on topology and size optimization[J]. Transactions of the Korean Society of Mechanical Engineers-A, 2011, 35(2): 213-221. [6] 唐琪, 陈鹏, 黄菁婧, 等. 基于SYSWELD的地铁底架枕梁焊接变形的数值模拟[J]. 电焊机, 2017, 47(6): 101-104. [7] 袁新杰. 动车组座椅底架结构分析及优化设计[J]. 机电工程技术, 2010, 39(7): 61-63. [8] 张小玲, 黄洪钟, 许焕卫, 等. 基于混合变量的可靠性稳健设计方法[J]. 电子科技大学学报, 2012, 41(6): 949-953. [9] 崔杰, 张维刚, 常伟波, 等. 基于双响应面模型的碰撞安全性稳健性优化设计[J]. 机械工程学报, 2011, 47(24): 97-103. [10] 李永华, 董少迪. 动车组轴箱弹簧多响应稳健优化设计方法[J]. 中国铁道科学, 2016, 37(1): 100-107. [11] HUANG Tianlun, SONG Xuewei, LIU Xinyang. The multi-objective robust optimization of the loading path in the T-shape tube hydroforming based on dual response surface model[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(9/10/11/12): 1595-1605. [12] British Standard Institute. Fatigue design and assessment of steel structures: BS7608: 2014+A1: 2015[S]. London: BSI, 2015. [13] XU Huanwei, LI Wei, LI Mufeng, et al. Multidisciplinary robust design optimization based on time-varying sensitivity analysis[J]. Journal of Mechanical Science and Technology, 2018, 32(3): 1195-1207. [14] 鲍诺, 王春洁. 基于响应面优化的结构有限元模型修正[J]. 北京航空航天大学学报, 2014, 40(7): 927-933. [15] 薛红军, 李云锋. 结构优化设计的组合优化策略[J]. 机械强度, 2013, 35(3): 278-282.

备注/Memo

备注/Memo:
作者简介:李永华(1971—),女,博士,教授,主要研究方向为轨道车辆现代化设计方法、车辆结构的疲劳可靠性分析、机械产品数字仿真与优化设计、质量与RAMS工程。
更新日期/Last Update: 2019-05-10