[1]张茂松,李芾,杨 阳.基于不同车轮直径的轮轨接触关系问题[J].机车电传动,2016,(06):30-34.[doi:10.13890/j.issn.1000-128x.2016.06.007]
 ZHANG Maosong,LI Fu,YANG Yang.Wheel-rail Contact Relation Based on Different Wheel Diameter[J].Electric Drive for Locomotives,2016,(06):30-34.[doi:10.13890/j.issn.1000-128x.2016.06.007]
点击复制

基于不同车轮直径的轮轨接触关系问题()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2016年06期
页码:
30-34
栏目:
研究开发
出版日期:
2016-11-10

文章信息/Info

Title:
Wheel-rail Contact Relation Based on Different Wheel Diameter
文章编号:
1000-128X(2016)06-0030-05
作者:
张茂松李芾杨 阳
(西南交通大学机械工程学院,四川 成都 610031)
Author(s):
ZHANG Maosong LI Fu YANG Yang
( School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China )
关键词:
车轮车轮直径轮轨接触关系铁道车辆
Keywords:
wheels wheels diameter wheel-rail contact relation railway vehicle
分类号:
U260.11
DOI:
10.13890/j.issn.1000-128x.2016.06.007
文献标志码:
A
摘要:
针对不同车辆的车轮直径差异问题,研究了车轮直径对轮轨接触几何关系、轮轨接触斑、轮轨最大接触应力、蠕滑率、车辆稳定性以及轮轨磨耗等的影响。通过计算可以得出:随着车轮直径增加,左右车轮滚动圆半径差逐渐增大,等效锥度随着车轮横移量逐渐增大;接触斑面积逐渐变大,轮轨接触最大应力显著下降;轮轨的横向和纵向蠕滑率逐渐减少;车辆的稳定性变好,车辆过曲线时的磨耗变大。
Abstract:
Aim at the wheel diameter difference problem, influence of wheel diameter on wheel-rail contact geometrical relationship, contact spot, the maximum contact stress, creepage, vehicle stability and wheel-rail abrasion was researched. The result of calculation showed that with the increase of wheel diameter: left and right wheel rolling radius difference increased, and the equivalent conicity gradually increased with the wheel sliding; the contact spot area became large and the maximum stress decreased significantly; the wheel rail lateral and longitudinal creepage gradually decreased; the stability of the vehicle became better, and the wear became larger when the vehicle was over the curve.

参考文献/References:

[1] 任尊松. 车辆系统动力学[M]. 北京:中国铁道出版社, 2007:23-33.
[2] 金学松,沈志云 . 轮轨滚动接触力学的发展[J]. 力学进展, 2001(1):33-46.
[3] 金学松,刘启跃. 轮轨摩擦学[M]. 北京:中国铁道出版社, 2004:20-28.
[4] International Union of Railways. Method for Determining the Equivalent Conicity:UIC Code 519[S]. Pairs: International Union of Railways, 2004.
[5] International Union of Railways. Testing and Approval of Railway Vehicles from Point of View of their Dynamic Behavior – Safety – Track fatigue – Ride Quality:UIC Code 518[S]. 3rd ed. Pairs: International Union of Railways, 2005.
[6] 姚建伟,孙丽霞. 机车车辆动力学[M]. 北京:科学出版社, 2014:96-106.
[7] 王文健,郭俊,刘启跃. 轨道结构参数对轮轨滚动接触应力影响[J]. 机械工程学报,2009(5):39-44.
[8]雷腾 . 轮轨接触应力的计算与分析[J]. 中国铁道科学,1985(1): 53-66.
[9] Garg V K, Dukkipai R V. Dynamics of Railway Vehicle System[M]. Orland: Academic Press, 1984.
[10] 肖乾,徐红霞,黄碧坤,等. 轮对横移对高速轮轨稳态滚动接触蠕滑力和蠕滑率的影响[J]. 中国铁道科学,2014(4): 88-93.
[11] 严隽耄,傅茂海. 车辆工程[M]. 北京:中国铁道出版社, 2012:214-219.
[12] 白雪. 踏面形状对地铁车辆动力学性能及轮轨磨耗影响研究[D]. 成都:西南交通大学,2015.

相似文献/References:

[1]蒋鹏飞,米彩盈.组合材料车轮结构强度分析[J].机车电传动,2016,(04):59.[doi:10.13890/j.issn.1000-128x.2016.04.013]
 Jiang Pengfei,Mi Caiying.Strength Analysis of Composite Material Wheels[J].Electric Drive for Locomotives,2016,(06):59.[doi:10.13890/j.issn.1000-128x.2016.04.013]
[2]梁红琴,赵永翔,杨冰,等.高速动车组拖车车轮疲劳强度的分析评定[J].机车电传动,2013,(02):18.[doi:10.13890/j.issn.1000-128x.2013.02.008]
 LIANG Hong-qin,ZHAO Yong-xiang,YANG Bing,et al.Fatigue Strength Analysis and Check of High-speed EMUs Trailer Wheel[J].Electric Drive for Locomotives,2013,(06):18.[doi:10.13890/j.issn.1000-128x.2013.02.008]
[3]刘旭,张开林,姚远,等.两种评定准则下的车轮疲劳强度分析[J].机车电传动,2012,(04):23.[doi:10.13890/j.issn.1000-128x.2012.04.008]
 LIU Xu,ZHANG Kai-lin,YAO Yuan,et al.Analysis of Wheel Fatigue Strength under Two Different Assessing Criterions[J].Electric Drive for Locomotives,2012,(06):23.[doi:10.13890/j.issn.1000-128x.2012.04.008]
[4]方宇,穆华东,朱祺.上海地铁3号线车轮踏面异常磨耗分析[J].机车电传动,2010,(02):45.[doi:10.13890/j.issn.1000-128x.2010.02.007]
[5]苏绪平,米彩盈.基于AutoLISP 的S 型辐板车轮交互式参数化设计[J].机车电传动,2020,(03):110.[doi:10.13890/j.issn.1000-128x.2020.03.023]
 SU Xuping,MI Caiying,Interactive Parametric Design of S-type Web Wheel Based on AutoLISP[J].Electric Drive for Locomotives,2020,(06):110.[doi:10.13890/j.issn.1000-128x.2020.03.023]

备注/Memo

备注/Memo:
作者简介:张茂松(1991-),男,硕土研究生,研究方向为城市轨道交通车辆工程。
更新日期/Last Update: 2016-11-10