[1]林萍,王黎,罗林.基于SIFT的高速列车车顶瓷瓶识别方法[J].机车电传动,2012,(05):87-89.[doi:10.13890/j.issn.1000-128x.2012.05.025]
 LIN Ping,WANG Li,LUO Lin.High-speed Locomotive Porcelain Positioning Method Based on SIFT[J].Electric Drive for Locomotives,2012,(05):87-89.[doi:10.13890/j.issn.1000-128x.2012.05.025]
点击复制

基于SIFT的高速列车车顶瓷瓶识别方法()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2012年05期
页码:
87-89
栏目:
试验检测
出版日期:
2012-07-10

文章信息/Info

Title:
High-speed Locomotive Porcelain Positioning Method Based on SIFT
文章编号:
1000-128X(2012)05-0087-03
作者:
林萍王黎罗林
西南交通大学光电工程研究所
Author(s):
LIN PingWANG LiLUO Lin
(Institute of Photoelectricity Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China)
关键词:
瓷瓶绝缘子SIFT特征点定位高速列车
Keywords:
porcelain insulator SIFT feature points position high speed locomotive
分类号:
U225.4+3, TP391.41
DOI:
10.13890/j.issn.1000-128x.2012.05.025
摘要:
针对高速列车车顶瓷瓶定位,研究了一种基于SIFT的瓷瓶定位方法。首先分别提取瓷瓶图像和瓷瓶样本库中适应尺度变化的不变特征点,然后通过关键点的欧氏距离匹配特征点,最后得到瓷瓶特征点,正确定位瓷瓶。试验结果表明:该方法能准确定位瓷瓶,并提高了定位瓷瓶的速度。
Abstract:
A porcelain positioning method based on SIFT was proposed. First, the scale invariant features of image and porcelain were extracted respectively, then, feature points were matched through Euclidean Distance of the key points, finally, the porcelain feature points were obtained and porcelain was positioned correctly. Experimental results showed that the method could accurately locate porcelain insulator and improve the computing speed.

参考文献/References:

[1 ] 王立新,卫志刚,孙丙新,等. 变电站支柱绝缘子超声波检测工艺方法的选择和试验分析[J]. 无损检测,2006,28(12): 636-640.
[2] David G Lowe. Object recognition from local scale-invariant features[J]. Proceedings of the International Conference on Computer Vision,1999,2:1150-1157.
[3] David G Lowe. Distinctive Image Features from Scale-Invariant Key points[J]. International Journal of Computer Vision,2004, 60(2):91-110.
[4] Brown M, Lowe D G. Invariant features from interest point groups[M]. Cardiff, Wales:British Machine Vision Conference, 2002:656-665.
[5] Matthew Toews, William M Wells III, D Louis Collins. Featurebased Morphometry: Discovering Group-related Anatomical Patterns[J]. NeuroImage,2009,49 (3):2318-2327. doi:10.1016/ j.neuroimage.2009.10.032. PMID 19853047.
[6] Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,10(27):1615-1630.
[7 ] 康燕妮,黄欢,朱玉艳,来沛剑. 基于SIFT 的超分辨率图像配准及MATLAB实现[J]. 电脑知识与技术,2009,5(28): 8031-8033.

备注/Memo

备注/Memo:
作者简介:林萍(1988-),女,硕士研究生,研究方向为光电检测及信息处理。
更新日期/Last Update: 2017-05-12